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Problemas de otimização, na sua forma geral, têm como objetivo maximizar ou 
minimizar uma função definida sobre um determinado domínio. O exemplo a ser 
aplicado é o conceito de máximos e mínimos e otimização dos resultados na 
montagem de uma caixa. Na solução de problemas práticos, o maior desafio está 
em converter o problema em um problema de otimização matemático estabelecendo 
uma função que deve ser maximizada ou minimizada. Indicaremos alguns máximos 
e mínimos para que possamos adaptá-los para esta situação. O primeiro passo para 
solucionar este problema é escrever precisamente qual a função a ser analisada. 
Com a função bem definida, devemos identificar um intervalo apropriado e então 
proceder a rotina matemática aplicando definições de máximos e mínimos (fazendo 
a derivada da primeira para achar os pontos críticos e a derivada da segunda para 
achar se é ponto de máximo ou de mínimo). Abaixo descreveremos um exemplo 
onde se aplica este problema. Deve-se construir uma caixa de base retangular, com 
uma folha de cartolina de 40 cm de largura e 52 cm de comprimento, retirando-se 
um quadrado da cada canto da cartolina e dobrando-se perpendicularmente os lados 
resultantes. Determine o tamanho do lado do quadrado que permite construir uma 
caixa de volume máximo. A solução do problema é resolvida da seguinte forma: 
Dobrando-se a cartolina ao longo das linhas tracejadas de uma caixa, a base da 
mesma obtida terá dimensões 52 – 2x e 40 – 2x.  A quantidade a ser maximizada é 
o volume V como função de x. V= Comprimento x altura x largura. V(x) = x(40-2x) 
(52-2x) = 4x³ -184x² +2080x. Para achar os números críticos da função, 
diferenciamos a função V. V´(x) = 12x² -368x +2080.  Fazendo V´(x) = 0 obtemos as 
raízes aproximadamente 23,19 e 7,47, que são os números críticos. Fazemos a 
segunda derivada, V´´(x) = 24x -368. Para o número crítico 23,19 teremos V´´(x)= 
24.(23,19) -368 = 188,56 >0 , então esse ponto é o valor de mínimo local da função.  
Para o número 7,47 teremos V´´(x) = 24.(7,47) -368 = -188,72 <0, então esse é o 
valor máximo local. Assim, temos que devem ser dobrados 7,47 cm de cada lado 
para obtermos a capacidade máxima. Consequentemente deve-se cortar um 
quadrado de 7,47 cm de lado, de cada canto da folha de cartolina, para maximizar o 
volume da caixa. 


